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The Bresenham Line-Drawing Algorithm

The basic Bresenham algorithm

Consider drawing a line on a raster grid where we restrict the allowable slopes of the line to

the range .

If we further restrict the line-drawing routine so that it always increments x as it plots, it

becomes clear that, having plotted a point at (x,y), the routine has a severely limited range of

options as to where it may put the next point on the line:

It may plot the point (x+1,y), or:

It may plot the point (x+1,y+1).

So, working in the first positive octant of the plane, line drawing becomes a matter of

deciding between two possibilities at each step.

We can draw a diagram of the situation which the plotting program finds itself in having

plotted (x,y).

In plotting (x,y) the line drawing routine will, in general, be making a compromise between

what it would like to draw and what the resolution of the screen actually allows it to draw.

Usually the plotted point (x,y) will be in error, the actual, mathematical point on the line will

not be addressable on the pixel grid. So we associate an error, , with each y ordinate, the

real value of y should be . This error will range from -0.5 to just under +0.5.

In moving from x to x+1 we increase the value of the true (mathematical) y-ordinate by an

amount equal to the slope of the line, m. We will choose to plot (x+1,y) if the difference

between this new value and y is less than 0.5.

Otherwise we will plot (x+1,y+1). It should be clear that by so doing we minimise the total error

between the mathematical line segment and what actually gets drawn on the display.

The error resulting from this new point can now be written back into , this will allow us to

repeat the whole process for the next point along the line, at x+2.
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The new value of error can adopt one of two possible values, depending on what new point is

plotted. If (x+1,y) is chosen, the new value of error is given by:

Otherwise it is:

This gives an algorithm for a DDA which avoids rounding operations, instead using the error

variable  to control plotting:

This still employs floating point values. Consider, however, what happens if we multiply across

both sides of the plotting test by  and then by 2:

All quantities in this inequality are now integral.

Substitute  for . The test becomes:

This gives an integer-only test for deciding which point to plot.

The update rules for the error on each step may also be cast into  form. Consider the

floating-point versions of the update rules:
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Multiplying through by  yields:

which is in  form.

Using this new ``error'' value, , with the new test and update equations gives Bresenham's

integer-only line drawing algorithm:

Integer only - hence efficient (fast).

Multiplication by 2 can be implemented by left-shift.

This version limited to slopes in the first octant, .

Here is a C++ implementation of the Bresenham algorithm for line segments in the first

octant.

    void linev6(Screen &s, 
              unsigned x1, unsigned y1, 
              unsigned x2, unsigned y2, 
              unsigned char colour ) 
    { 
      int dx  = x2 - x1, 
          dy  = y2 - y1, 
          y   = y1, 
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          eps = 0; 
     
      for ( int x = x1; x <= x2; x++ )  { 
        s.Plot(x,y,colour); 
        eps += dy; 
        if ( (eps << 1) >= dx )  { 
          y++;  eps -= dx; 
        } 
      } 
    } 

This is an all-integer function, employs left shift for multiplication and eliminates redundant

operations by tricky use of the eps variable.

This implementation of Bresenham's algorithm is incomplete, it does not check the validity of

its arguments. A real implementation should do this. In fact, a real implementation of

Bresenham's algorithm should do more than simply reject lines with slopes lying outside the

first octant, it should handle lines of arbitrary slope.

Handling multiple slopes

If we try out the C++ implementation of the Bresenham algorithm, we find it has some

peculiar properties.

As expected, it fails to plot lines with negative slopes (try it and see what happens). It also

fails to plot lines of positive slope greater than 1 (this is an interesting case, try it also and

see if you can explain what is happening).

More unusually, we find that the order in which the endpoints are supplied to this routine is

significant, it will only work as long as x1 is smaller than x2.

In fact, if we have two line segments with the same endpoints, and the same slope, this

routine may draw one of them successfully but fails to draw the other one.

Of course, this is not surprising really, when we consider that the function works by

incrementing x. It does emphasise, however, that the routine is plotting vectors, direction is

significant. Considering all the vectors from (x1,y1) to (x2,y2) we find that there are eight

regions, (the ``octants'') and the basic Bresenham algorithm works in only one of them.
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A full implementation of the Bresenham algorithm must, of course, be able to handle all

combinations of slope and endpoint order.

Some of the regions in the plane, those for which x2 is smaller than x1 can be handled by

exchanging the endpoints of the line segment.

It is also clear that we will need a piece of code to handle large slopes by stepping over y

instead of x values.

However, careful consideration of the diagram will reveal that there is one case which cannot

be reduced to a version of the algorithm we have already looked at. If we want to draw a line

having a small negative slope, we will have to consider a modification of the basic Bresenham

algorithm to do this. (The same point applies to lines of large negative slope as well, but the

code for small negative slopes may be adapted to this case by stepping over y instead of x).

Bresenham for negative slopes
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Consider a line with negative slope between 0 and 1 (i.e., small negative slope. Given that a

line-drawing algorithm has plotted a point at (x,y), its choice about where to plot the next

point is between (x+1,y-1) and (x+1,y).

As usual there will be an error, , associated with y. Choice of the next point to plot will be

based on an attempt to minimise error, so plot (x+1,y) if:

Otherwise plot (x+1,y-1). Notice that the error generated by the above is negative. A little

manipulation gives a decision inequality:

It is worth comparing this with the decision inequality for the case of positive slope.

The error update rules are also subtly different for this case of negative slope.

If plotting (x+1,y) the new value of error is given by:

Otherwise, plotting (x+1,y-1) gives new error:

A pseudocode algorithm for this routine may be written as:
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This is cast in terms of floating-point values.. It is, however, a trivial matter to convert the

algorithm into an integer-only form.
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